Lenient Multi-Agent Deep Reinforcement Learning

نویسندگان

  • Gregory Palmer
  • Karl Tuyls
  • Daan Bloembergen
  • Rahul Savani
چکیده

Much of the success of single agent deep reinforcement learning (DRL) in recent years can be attributed to the use of experience replay memories (ERM), which allow Deep Q-Networks (DQNs) to be trained efficiently through sampling stored state transitions. However, care is required when using ERMs for multi-agent deep reinforcement learning (MA-DRL), as stored transitions can become outdated because agents update their policies in parallel [11]. In this work we apply leniency [23] to MA-DRL. Lenient agents map state-action pairs to decaying temperature values that control the amount of leniency applied towards negative policy updates that are sampled from the ERM. This introduces optimism in the valuefunction update, and has been shown to facilitate cooperation in tabular fully-cooperative multi-agent reinforcement learning problems.We evaluate our Lenient-DQN (LDQN) empirically against the related Hysteretic-DQN (HDQN) algorithm [22] as well as a modified version we call scheduled-HDQN, that uses average reward learning near terminal states. Evaluations take place in extended variations of the Coordinated Multi-Agent Object Transportation Problem (CMOTP) [8] which include fully-cooperative sub-tasks and stochastic rewards. We find that LDQN agents are more likely to converge to the optimal policy in a stochastic reward CMOTP compared to standard and scheduled-HDQN agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Double Deep Multiagent Reinforcement Learning in Stochastic Cooperative Environments

Despite single agent deep reinforcement learning has achieved significant success due to the experience replay mechanism, Concerns should be reconsidered in multiagent environments. This work focus on the stochastic cooperative environment. We apply a specific adaptation to one recently proposed weighted double estimator and propose a multiagent deep reinforcement learning framework, named Weig...

متن کامل

Reinforcement Learning in Multi-agent Games

This article investigates the performance of independent reinforcement learners in multiagent games. Convergence to Nash equilibria and parameter settings for desired learning behavior are discussed for Q-learning, Frequency Maximum Q value (FMQ) learning and lenient Q-learning. FMQ and lenient Q-learning are shown to outperform regular Q-learning significantly in the context of coordination ga...

متن کامل

Multi-Agent Deep Reinforcement Learning

This work introduces a novel approach for solving reinforcement learning problems in multi-agent settings. We propose a state reformulation of multi-agent problems in R that allows the system state to be represented in an image-like fashion. We then apply deep reinforcement learning techniques with a convolution neural network as the Q-value function approximator to learn distributed multi-agen...

متن کامل

Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning

Many real-world problems, such as network packet routing and urban traffic control, are naturally modeled as multi-agent reinforcement learning (RL) problems. However, existing multi-agent RL methods typically scale poorly in the problem size. Therefore, a key challenge is to translate the success of deep learning on singleagent RL to the multi-agent setting. A key stumbling block is that indep...

متن کامل

Cooperative Multi-agent Control Using Deep Reinforcement Learning

This work considers the problem of learning cooperative policies in complex, partially observable domains without explicit communication. We extend three classes of single-agent deep reinforcement learning algorithms based on policy gradient, temporal-difference error, and actor-critic methods to cooperative multi-agent systems. We introduce a set of cooperative control tasks that includes task...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1707.04402  شماره 

صفحات  -

تاریخ انتشار 2017